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Nutrient-Plankton

**The most important feature of an ecosystem is the
number of species in different tropic levels of a food web.

**Living organism gradually grow and actively incorporate
energy and nutrient into their biomass of their descendants.

**These nutrients are obtained by either uptaking from the
abiotic environment or consumption from the biomass of
other organism in the food web.
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Planktonic Bloom

A planktonic bloom is defined as a rapid and
marked increase in the local population of plankton.

**The main factors that cause blooms to occur are
sunlight, nutrients, and changes in water
temperature.
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The Mathematical Model contd.

Dilution rate is referred to as the water exchange rate or flushing rate when referring to
open marine system (Ecological effects of wastewater: applied limnology and pollution
effects By Eugene B. Welch, T. Lindell).

The rate of nutrient exchange rate is referred to as Dilution rate. When the dilution rate is
very low, the cells reach a high density as the nutrients are leaving the system at a very slow
rate and the cells get ample timed to use the substrate. Thus the nutrient concentration is
maintained at a low level in the system.

On the other hand, if the dilution rate of nutrient is high, the cell density is low as they have
a little time to use the substrate.
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Mathematical Model

N(t) be the concentration of the nutrient at time t.

P(t) the autotroph biomass

Z(t) the number of herbivores present at time t.

N O be the constant input of nutrient concentration.

D is the dilution rate of nutrient. Its inverse 1/D represents the average time that nutrient
and waste products spend in the system.

al and a2 be the nutrient uptake rate for the autotroph biomass and conversion rate of
nutrient for the growth of the autotroph biomass respectively (a2 < al).

i and p2 denote respectively the mortality rates of the autotroph biomass

and of the herbivore population.

U3 (U3 £ ) and p4b (pd < u2) be the nutrient recycle rates respectively coming from the
dead autotroph biomass and the dead herbivore population.

The maximal zooplankton’s herbivore hunting rate is represented by y1 while y2 (y2 <y1)
is its maximal herbivore conversion rate.



Mathematical Model contd.

We choose Holling type Il and type Il functional forms to describe the grazing
phenomena with K1 and K2 as half saturation constant.

We also include harvesting of the top population in this food chain, at rate h.
The harvesting is modeled via a Holling type Il function with half saturation
constant E, to mimic the diminishing returns obtained via constant harvesting
efforts, as it commonly occurs in fisheries models.

In addition, it has been observed that other food sources are occasionally
available to phytoplankton, other than the basic nutrients N. The additional food
source is vitamin B12, [7, 15, 16].

We include the latter in our description. Thus, let rP be the phytoplankton’s growth
rate due to this additional vitamin supply.

Then the autotroph biomass mortality rate is pl = p - r € R. With these
assumptions our deterministic system is
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Mathematical Model
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Some basic results

The system (1) possesses the following three equilibria: the nutrient-only
equilibrium Ey = (N, 0,0), the zooplankton-free equilibrium E; = (Ny, Py, 0)
and possibly the coexistence of the three populations, E* = (N*, P*, Z*).
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Some basic results

The nutrient-only equilibrinm

FEy is always feasible; the Jacobian (2) evaluated at this equilibrium has the
eigenvalues —D < 0, —(hE~' 4+ ) < 0 and p,(Rp — 1), where Ry is defined
below. Thus for pu; < 0 this equilibrium is never stable, while for pu; > 0, Ey
1s locally asymptotically stable if and only if
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Some basic results

The zooplankton-free equilibrium

At E4 the population levels are
K D nN© — (N + KK
Ny — L1 £ P, — [N ( —+ 1]#1]

Cvg — [y~ (a2 — p1) ety — paces]

Therefore for gy > 0 this equilibrium 1s feasible if as > 1y and either one
the two alternative conditions hold:
NC + Ky 15 Ly NO + K4

erﬂ < (kg < Ct]_llu—j. ﬂ]g < (ko =< 151 _hrﬂ

H1

Stability of E; 1s then ensured by

vo ED2a2M?

R <1,
L P DﬂaﬂMﬂ(mE + h}
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Some basic results

The coexistence equilibrium

The coexistence equilibrium E* = (N*, P*, Z*) cannot be found explicitly,
since
N P2+ m(E3+ P)Ky . (K34 Pk

_ oz = _E.
(o — 1) (K3 + P*?) — mP*Z* (72 — p2) P — K3 po

For feasibility

E[(y2 — pa) P** — K3 o) 1 P*Z*

h} K§+P¢E 1 HE}”I+K§+P$E'
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Stability analysis

a1 K1 P a1 N
D-mar  TRay T i
KimP aa N QH%’TIE P *‘r'lPE
V= (K1 +N)? KN Klepe M  Kj+PR
0 2HinP 7 wP? _ _ _Eh
®RPP KPR TR
Stability of Ey is then enswred by 5 . eenN®

Stability of E; 15 then ensured by TR E

R —
' Py D?a@ M2 (B + 1)

1,
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Stability analysis of positive interior equilibrium E~

I'he characteristic equation 1s

y® 4+ Ayt 4+ Asy + Az = 0

where Ay = —tr(V) = (Vig + Vag + Vag), Ay = My(V) := Viy Vg + Voo Vg +
Vqug - VEEVEE — HEVTJI: AE — dEt( ) — VIIVEEVEE T VIEVEIVES - VIIVEEVEE -
ViaVar Vag

By the Routh—Hurwitz criteria, all roots of above
equation have negative real parts if and only if

A, >0,,A;>0and A/A, - A; >0.



Analysis of globally asymptotically stable at E,

idT.

N r - P
T — N Ny — Ki+ N r— P
W(N, P) =f T Lo T #3{7 1+ 1][ T — P
Ny I {lﬁgfw]_ Py I
Estimating from abowve its time derivative along the trajectories of the sub-
system (1) with Z = 0, we find

W _ v [D(N“ -N) _DWN°-Ny _ ( a #3)

df N Ny Ki+N N

Oy Ha 'y Ha Ky
+5 (_F{. + N, N.) - (H. +N, N.) K, +N) (P —F)
D (N — N
N NN
Thus, if Ny, < N°, which is the very first inequality in (4), the second term
15 negative and the derivative also.

< —(N - M) [Pus + D(N® — Ny)).
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Direction of Hopf Bifurcation

Theorem: 1. The parameter pgy determines the direction of the Hopt-

bifurcation. If po9 > 0 (< 0) then the Hopf-bifurcation is supercritical (sub-
critical) and the bifurcating periodic solutions exists for h > h*.
The stability and the period of the bifurcating periodic solutions are respec-
tively determined by the parameters 3 and 7 defined in the proof. The
solutions are orbitally stable (unstable) if 33 < 0 (> 0) and the period in-
creases (decreases) if m = 0 (< 0).
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stochastic model

* Alinear stochastic process is formulated as an approximation to a
nonlinear ecosystem model. The formulation traces a chemical
nutrient as it undergoes random exchanges between the
phytoplankton, zooplankton, and the euphotic zone of an aquatic
ecosystem.

 The formulation of a linear process allows the derivation of a
partial-differential equation for the cumulant-generating function
of the process. The use of this equation leads to a system of linear,
deterministic differential equations for the cumulants of the
process.
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Stochastic model

dIN = Fj(IN, P, Z)dt + o, (IN — N*)dg],
dP = Fy(IN, P, Z)dt + ox(P — P™)dE£Z,
dZ = F3(IN, P, Z)dt + oa(Z — Z*)dE&F

where oy, 09 and o3 are real constants, known as the intensities of environ-
mental fluctuations, £ = &(¢), i = 1,2,3 are standard Wiener processes
independent of each other [21].
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Some basic results

Theorem 2. Assume that the functions O(U, {) € C5(()) and Lg satisfy the
mequalities
m|U|I™ < (U, t) < r|U|%,
Lo(U,t) < —ra|U|*, r >0, i=1,2,3, o= 0.

Then the trivial solution of — dU(t) = Fp(U(1))dt + g(U(t))dE(t),

1= exponentially a-stable for all timme ¢ = 0.
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Some basic results

Theorem 3. Assume Vi; << 0, 2,7 = 1, 2,3, and that for some positive real
values of wyg, £ = 1. 2, the following mmequality holds

[2[1 —+ wg}[rgg —+ 21*’739:'.;;2 —+ {1 —+ «..ugjl-l:l"ll] [21*’1;‘;:’4!1 —+ 31}11,-.-1 —+ Elr;g[u.ﬁ —+ .J;,-gjl
+(wr + wa)o3] > [View: + Vasws + Vag(1 + ws) + Vas(wy + wa) + Vasws]” .(18)

Then if o7 <= —2V7,, it follows that

o EIIQQ{ 1+ u:,-gjl + 2Vhawe 2 2V9iawy + 2Vagquy + 21%;{&1 —+ -;.-_Jg}
Fo = — . Fg = — ’
1 + wa W + wWo _
(19)
where
ty * a1 n™ 11 + Via + Vs

 Via 4+ Vi1 + Vag — Vis — Vas' " Vis — (Via + Vi1 4+ Vag) 4+ Vay'’

(20)

and the zero solution of system (12) is asymptotically mean square stable.
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The table representing thresholds and stability of steady states

Thresholds (Rp, Ry ) (Ng,0,0) (N, P,0) (N* P* 7%

Ry <1 Asymptotically stable Not feasible Not feasible

Ry>1, Ry <1 Unstable Asymptotically stable Not feasible
Ri>1 Unstable Unstable Asymptotically stable
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Table 2 ( Set of parametric values)

Parameter | Definition Value | Unit

N Constant input of nutrient 20 | mgml™

) Dilution rate of nutrient 05 | day!

0 Nutrient uptake rate for the autotroph biomass 1§ | dyy! 08-,
iy Nutrient conversion rate for the growth of autotroph 12| dey!

I Autotroph biomass uptake rate for the herbivore L [dy! | %
% Autotroph biomass conversion rate for the herbivore 09 | day!

I Mortality rate of autotroph biomass 06 | day!

I Mortality rate of herbivore 04 | day!

I Nutrient Recycle rate due to the death sutotroph biomass | 01 | day™

4 Nutrient recycle rate due to the death of herbivore 0.1 day'1

Ki Half saturation constant for autotroph 0.3 mgml'1

Ky Half saturation constant for herbivore 03 | mgl™!

h Harvesting rate of herbivore population 04 | day! il 0 0 R
) Effort requirad to harvest the harbivores W0 | dey!

The equilibrium point E* (0.7297, 0.6331, 0.1941)is stable with
-0.5081, -0.0327+i0.3106, -0.0327-i0.3106, for the parametric
values as given in the Table 2
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The plot is obtained for the reference parameter values given in Table 2, but with D = 0.55.

The plot is obtained for the reference parameter values given in Table 2 with h = 0.2. (Right)
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The plot is obtained for the reference parameter values given in Table 2 with h = 0.5. (left)

The plot is obtained for the reference parameter values given in Table 2, but with h = 0.5; in addition we take r = 0, the
continuous line, and r = 0.14, the dotted line. (right)
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Bifurcation Analysis

* |t is observed that f1(h) = A1(h)A2(h) and f2(h) = A3
intersect at h =0.135 and h = 0.368 indicating that the
system (1) changes its stability when the parameter h
crosses the thresholds h* =0.135 and 0.368.

 Moreover, for h > 0.135 we see that f1(h) < f2(h) the
system (1) unstable at Ex.

* On the other hand, for h > 0.368 we observe that f1(h)
> f2(h), satisfying the condition of stability at Ex.



Figure 5: (a) The two curves f1(h), fo(h), intersect at the A = h* (red star). (b) The
tangent to the curve g1(h) = f1(h) — fo(h) at h = h* is not parallel to the A axis.
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Bifurcation diagrams in terms of h (Left)
Bifurcation diagrams in terms of N 9 (Right)
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Figure 6: (a) The two curves f1(IV?9), fAUVYP), intersect at the W?% = WNO* (red star). (b)

The tangent to the curve g1 (IV°) = FfA (N9 — (VO at N® = NO* is not parallel to the
NO axis.
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Figure 7: Effects of environmental fluctuations.
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Left: o1 = 0.09, o5 = 0.08, o3 = 0.09;
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Conclusions

¢ The system exhibits dynamics instability (plankton bloom) due to high
nutrient input rate and low value of harvesting rate of herbivores
population separately.

¢ In presence of high dilution rate of nutrient the system exhibits
recurrence bloom.

¢ Low value of harvesting rate of herbivores may lead to extinction of
herbivores population.
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Conclusions

**The additional food source of autotroph biomass
maintains stability.

s*Discussed stochastic stability in presence of
environmental disturbances and compared with
deterministic model.
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